GSA Town Hall Meeting
Towards a Global Geoscience Initiative

Critical Research Challenges in Natural Resource Geosciences for the Early 21st Century

Murray W. Hitzman
Charles Fogarty Professor of Economic Geology
Colorado School of Mines

20 October 2009
Acknowledgements

- A number of individuals were contacted concerning the issue of grand challenges in natural resources geosciences – thanks to all! But especially —

- Mark Barton
- Maeve Boland
- Larry Cathles
- Stephen Kesler
- Donald Paul
- Jeremy Richards
- Steve Sonnenberg
- Scott Tinker
- Neil Williams
Framing the Issue

- What is the overarching challenge facing humanity in the early 21st century?

\textit{Sustainable existence on planet Earth}

(+ increased living standards for much of the world’s population)
The Real Driver for the Challenge — Population Growth (human system)

<table>
<thead>
<tr>
<th>Country</th>
<th>2005</th>
<th>2030 estimates</th>
</tr>
</thead>
<tbody>
<tr>
<td>China</td>
<td>1.31</td>
<td>1.46</td>
</tr>
<tr>
<td>India</td>
<td>1.09</td>
<td>1.53</td>
</tr>
<tr>
<td>USA</td>
<td>0.29</td>
<td>0.36</td>
</tr>
<tr>
<td>Indonesia</td>
<td>0.23</td>
<td>0.28</td>
</tr>
<tr>
<td>Brazil</td>
<td>0.22</td>
<td>0.23</td>
</tr>
</tbody>
</table>

Source: U.S. Census Bureau
Some strategic issues: (intersections between human and earth systems)

- Growth of mega-cities and need for energy
- Restructuring of global capital and debt
- Renewable energy growth and land use
- U.S., China, coal, and carbon
- Coupling of IT and natural resources growth
- Unanticipated discoveries / technologies
- Unanticipated consequences
Framing the Issue — Natural Resources

- How do the natural resources geosciences relate to the global challenge?

 Energy

 Water

 Earth Materials

Through the twin prisms of environmental sustainability and climate change
Natural Resource Issues Involve Complexity:

Science and Technology +
Economics and Business +
Society and Environment +
Policy and Government
Natural Resources - Energy

- Fossil fuels (coal, petroleum, natural gas, unconventional fossil)
- Nuclear
- Renewables (hydro, solar, wind)
Natural Resources - Energy

- Production
 - Finding more
 - Producing and using what we have most efficiently

- Environment – wastes
 - Solids
 - Gases
 - Liquids
 - Heat (lost energy)
Natural Resources - Water

- Quantity and quality
- Reuse
Natural Resources – Earth Materials

- Production
 - Finding more
 - Using what we have most efficiently
 - Environmental impacts
 - Wastes
 - Land use
 - Energy
Geosciences (Forensics) [earth system]

- Geoscientists have generally focused on forensic science
 - Examine the scene of the crime
 - Do an autopsy

Like medical practitioners who have traditionally diagnosed problems after they happen.
Like medicine, we must move toward predictive and integrative geology.

But see how challenging it can be – current health care debate!
What unique skills do geoscientists bring to the table?

UNDERSTANDING THE EARTH SYSTEM & SCALE & TIME

But we have less expertise integrating earth and human systems
Natural Resource Implications - SCALE

Trillion is the magic number*

- Trillion gallons of fuel consumed per year
- Half a trillion gallons of water withdrawn per day in US
- Trillion watts of U.S. power generation capacity
- Trillion barrels of oil consumed in the last 125 years
- Two trillion pounds of sand & gravel consumed in US / year
- Three trillion pounds of copper consumed in the last decade
- Trillion tons of coal reserves
- More than $20 trillion in capital needed in 25 years for energy

Even for geoscientists, the scale of earth-human system issues is enormous!

* Modified from Donald Paul, William Keck Chair of Energy, USC
Natural Resource Implications - SCALE

“1% matters” — examples in energy

- Adding 1% to global oil reserves requires about $200 billion in exploration and production investment.

- U.S. ethanol production is about 1% of total global liquids production.

- Installing 10 GW of solar PV in the US would add 1% to total electric capacity.

- 2.5 million electric vehicles would displace 1% of US fuel demand (100,000 bbl/day).
Natural Resource Implications - SCALE

- **Enhanced Geothermal (EGS)**
 - How to manipulate and control both subsurface heat and seismicity (*crustal scale*)

- **Fluid / gas movement**
 - How to understand and manipulate materials at the *nano-scale* in geological environments.
Natural Resource Implications – TIME hundreds to millions of years

- Most individuals think seriously in terms of one to three generations (~150 years).
- Natural resource issues (earth + human systems) must be considered in 100’s to 1000’s of years.
 - Peak oil
 - Peak coal
 - Nuclear waste disposal
 - Aquifer recharge
- Geoscientists must routinely think in millions of years.
Natural Resource Implications – TIME

- Energy — natural gas, coal to liquids, oil shale, algal biofuels
 - Fracturing — pump from the source rock
 - In-situ creation of new liquids and gases
 - Genetic modification of algal materials and processes

Speed up geologic time!
Natural Resource Implications - TIME

- Earth materials
 - In-situ leaching (chemical, biological)
 - Co-produce metals from geothermal
 - Tap active sea-floor hydrothermal vents

Hasten geochemical processes
Natural Resource Implications - TIME

- Environment — carbon capture and sequestration (CCS)
 - Utilize and create subsurface reservoirs
 - Innovative ways to tie up CO_2

Create or manipulate subsurface permeability and reaction processes at geologically meaningful scales
Complexity, scale, and time: Natural Resources

Past, present, and future always co-exist.

Earth System
Resources
Knowledge

+ Human System
Technology
Values

Energy
Water
Environment

= Sustainable Existence
Natural Resources: Research Challenges — Overarching Themes

- How to better understand and engineer fluids (of all types) in the subsurface
 - *Energy (oil and gas; hydrothermal fluids)*
 - *Water*
 - *Environmental (CO₂)*

Predictive Geo-engineering
Natural Resources: Research Challenges — Predictive Geoengineering

- At all scales and through time.
- Utilize natural test sites (e.g. Earthscope) and human manipulated test sites (oil fields, major aquifers – Ogallala, etc.)
 - Field geology (traditional mapping)
 - Laboratory (empirical analysis)
 - Remote sensing (geophysics)
- Synthesis and predictive studies and tests
Global Geoscience Initiative - Natural Resources: Integrating the Earth and Human Systems

- Undertake the necessary *predictive* geoscience research – e.g. subsurface engineering
- Understand the societal context of this science
- Science + Social Sciences + Humanities
- Genuine dialog with those outside our discipline
- Engage with the public and public policy making

New Global Initiative:

Undertake required science

Communicate findings (scale, time, complexity)

Understand other perspectives